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Abstract—In order for many-task applications to be attrac-
tive candidates for running on high-end supercomputers, they
must be able to benefit from the additional compute, I/O,
and communication performance provided by high-end HPC
hardware relative to clusters, grids, or clouds. Typically this
means that the application should use the HPC resource in
such a way that it can reduce time to solution beyond what
is possible otherwise. Furthermore, it is necessary to make
efficient use of the computational resources, achieving high
levels of utilization.

Satisfying these twin goals is not trivial, because while the
parallelism in many task computations can vary over time,
on many large machines the allocation policy requires that
worker CPUs be provisioned and also relinquished in large
blocks rather than individually.

This paper discusses the problem in detail, explaining and
characterizing the trade-off between utilization and time to
solution under the allocation policies of Blue Gene/P Intrepid
at Argonne National Laboratory.

We propose and test two strategies to improve this trade-off:
scheduling tasks in order of longest to shortest (applicable only
if task runtimes are predictable) and downsizing allocations
when utilization drops below some threshold. We show that
both strategies are effective under different conditions.

Keywords - Many-task computing; scheduling; high-
performance computing; supercomputer systems.

I. INTRODUCTION

Many-task applications are characterized by two key
features that, when combined, provide the motivation for
this paper [1]. The first feature is that the application
comprises many independent tasks coupled with explicit I/O
dependencies. For high-throughput computing and many-
task computing applications, each task typically will be
single threaded or, if it is multithreaded, support parallelism
only within a single node’s address space. The number
of tasks assigned to each node in the machine can vary.
Multicore compute nodes are typical, so a machine node
might run several tasks in parallel. For example, on the
Blue Gene/P Intrepid at Argonne National Laboratory, each
compute node has four single-threaded cores [2], and on
Blue Waters, each compute node has eight cores, with
four virtual threads per core [3]. We call the unit that a
task is allocated to a “worker.” The nature of a worker
is both machine and application dependent: if tasks are
multithreaded, it may be most efficient to treat each node

as a worker and allocate one task per node. If tasks are
single-threaded, each core or virtual thread can be treated
as a worker.

The second feature of many-task applications is an empha-
sis on high performance. The many tasks that make up the
application effectively collaborate to produce some result,
and in many cases it is important to get the results quickly.
This feature motivates the development of techniques to
efficiently run many-task applications on HPC hardware. It
allows people to design and develop performance-critical
applications in a many-task style and enables the scaling
up of existing many-task applications to run on much larger
systems. The many-task style has definite advantages for
applications that can be expressed as a directed acyclic graph
of tasks. Existing applications can often be embedded in
the task graph, eliminating the need to rewrite them. Addi-
tionally, the task-graph structure of many-task applications
lends itself to easy reasoning about application behavior and
provides a straightforward model for failure recovery.

In this paper we discuss the challenges of executing
many-task applications on large supercomputers. To justify
using supercomputing resources for an application, we must
demonstratetwo results: that the application uses the ma-
chine’s processing power efficient, thereby achieving high
utilization, and that the use of supercomputing resources
allows the time to solution to be reduced significantly below
what is possible with less powerful systems.

If computing system worker nodes are individually allo-
cated to applications, it is straightforward to achieve fairly
efficient utilization of the allocated resources, at least if tasks
are compute bound: if a worker falls idle, it can simply be
released. However, parallel job schedulers typically assume
that all resources requested will be held for the same
duration, and allocating resources individually through the
scheduler typically adds overhead and delays. A user of a su-
percomputer such as a Blue Gene or Cray XT series system
must typically request compute nodes as a large block for a
prespecified duration through the supercomputer’s scheduler.
Particular constraints on the sizes and numbers of blocks that
can be requested are imposed because of intrinsic factors
such as system interconnect topology and because of policies
that, for various reasons, give priority to large jobs.

The degree of parallelism, and therefore the number of



runnable tasks, can fluctuate as the execution of a many-
task application proceeds. When a large block of worker
nodes or cores is allocated for a many-task application, and
subsequently the number of runnable or running tasks dips
to a much lower level, there may be many idle workers
allocated for the application that cannot be released. One
such case occurs in multistage workflows if some stages
have a greater degree of parallelism than others.

This situation can be viewed as a shortage of available par-
allelism in the application: the number of running/runnable
tasks is not enough to occupy all the workers that have
been allocated. But another way of viewing the problem
is to consider it a mismatch in the granularity of the
application’s tasks and the resource provisioning on parallel
supercomputers.

A range of heuristics can, in some cases, increase the
parallelism available at various points of execution [4], [5].

A specific case that can occur in many-task applications is
what we term the trailing task problem, where an increasing
number of workers have no further work to do and are sitting
idle, but a tail of some number of trailing tasks continues to
execute for some time. The defining feature of this situation
is a gradual and monotonic decrease in the number of active
tasks: as tasks complete, workers increasingly go from active
to idle.

In this paper we focus on the trailing task problem
and in particular on the simple case where the many-task
application is a set of tasks with no interdependencies.

II. RELATED WORK

Substantial work has been done on implementing load-
balancing algorithms in parallel and distributed-computing
systems. Load-balancing research has generally focused on
producing practical, well-performing algorithms to even out
disparities in load between workers, ensuring that lightly
loaded workers receive work instead of heavily loaded work-
ers and that idle workers are immediately given work. One
of the major areas of research in load-balancing has been
implementing efficient and scalable algorithms to detect and
fix load imbalances. An example is ADLB, an MPI-based
load-balancing library, which has scaled to 131,072 cores on
Intrepid [6]. In this paper we investigate the minimization of
the completion time of a set of tasks, rather than simply the
balancing of load between workers. However, an efficient
load-balancing and task dispatch system is essential to the
implementation of any of the scheduling policies proposed
in this paper.

The effects of skewed distributions of process lifetimes on
load balancing have also been studied. It has been shown
that, in the context of a network of workstations, process
migration is a valuable tool for load balancing when process
lifetimes are part of a heavy-tailed distribution [7].

Both allocation and deallocation policies have been ex-
plored in the context of many-task computing using the

Falkon task dispatch system [8].
A special case of the trailing task problem is referred to

as the “straggler” problem in the literature on data-intensive
computing. In this problem tasks run for an excessively
long time because of various unpredictable factors that
affect individual “straggler” machines, such as hardware
malfunctions or contention for CPU time or disks. There
are various documented strategies to detect straggler nodes
and mitigate the effect. The MapReduce framework, adopts
a simply strategy to deal with stragglers. Upon detecting a
task’s slow progress, it simply replicates the task on other
machines, under the presumption that the long running time
of the task is because of some factor affecting the current
machine, but not all other machines [9]. For obvious reasons,
this strategy is not at all effective if the long-running task
simple involves more work than others.

The paper does not consider the straggler problem; we
assume that each task’s runtime is determined solely by the
task definition and input data. This is a fair approximation
of the supercomputing environment we are considering, in
contrast to the cloud or data center environment.

It is unusual in a supercomputing installation for compute
nodes to be split between different allocations, so contention
between different processes is mainly limited to shared file
system and I/O resources. The problem of malfunctioning
hardware is also something we can disregard, at least for
the purposes of scheduling: we can reasonably assume that
malfunctioning hardware will be proactively replaced, rather
than demanding that the application or middleware be robust
to misbehaving hardware.

Several bi-criteria scheduling problems with different ob-
jectives from the one in this paper have been studied, for
independent jobs [10] and for computational workflows [11]
on parallel machines.

III. PROBLEM DESCRIPTION

If we ignore unpredictable variations in task runtime, then
our problem, at a high level, is as follows. The parallel
computer is made up of some number of identical workers
M1, M2, ..., (often called machines in the scheduling liter-
ature) that managed by the supercomputer’s scheduler. A
many-task application comprises n tasks (or jobs) J1, ..., Jn

with runtimes t1, ..., tn. The scheduler, upon request, can
allocate blocks of workers of differing sizes for the exclusive
use of a user.

Two stages of decisions must be made to schedule a
many-task application. First, workers must be acquired from
the scheduler in a way fitting the allocation policies of the
machine. The constraints imposed by allocation policies are
discussed further in Section V. Second, the tasks must be
scheduled on the available workers. It may or may not be
possible to preempt running tasks. In this paper we assume
tasks are not preemptable.



Our problem is a bi-criteria optimization problem:
we want to both minimize time to solution (TTS,
often called makespan in the scheduling literature)
and maximize utilization. Utilization is defined as
u = Σti

total allocated worker time , where numerator and
denominator are both measured in CPU time.

Related problems are well studied in the scheduling theory
literature, in particular the same problem in which m, the
number of machines allocated, is fixed. The problem we
encounter is atypical mainly because m must be chosen and
may be set to different values over time as the application
progresses. Hence, we must deal with the additional deci-
sions of how many machines to allocate, and we must trade
off the two competing goals of time to solution and worker
utilization.

IV. ALGORITHMS FOR FIXED WORKER COUNTS

The problem is simpler to analyze with fixed m, since
minimizing TTS and maximizing utilization are equivalent
goals. This simpler problem is key to solving the more
complex problem where we consider allocation: once we
have made an allocation decision, the problem still remains
to efficiently schedule tasks on that allocation of workers.

If we do not allow preemption and have no constraints
on task runtimes, then this problem is closely related to
the bin-packing problem and is NP-complete [12]. If there
are no precedence constraints on tasks, then the problem
allows various practical polynomial scheduling policies that
produce schedules with makespans that are, in the worst
case, within a fixed bound of the optimum [13].

Simple load-balancing approaches, where tasks are as-
signed to idle workers from a queue, can achieve results
with makespans within fixed bounds of the optimum. Any
arbitrary order of the queue will yield a schedule that
requires, in the worst case, 2 − 1/m times the duration of
the optimal schedule, where m is the number of processors.
Sorting the task queue so that the longest tasks are assigned
first gives a significant improvement, yielding a schedule
with duration at most 4/3−1/m of the optimal duration [13].

Also present in the literature are more sophisticated ap-
proximation algorithms that still run in polynomial time and
provide results provably closer to the optimal [13].

In practice, for many or most applications it is not possible
or practical to estimate task runtimes with a great deal of
accuracy, if at all. Therefore, any approach that assumes
knowledge of runtimes may not be feasible.

To further understand how well the two load-balancing
algorithms described above, random and sorted, will per-
form, we can identify two factors that frustrate attempts
at achieving an even load balance between processors, and
cause the trailing task problem to manifest itself.

The first factor is variance in task duration. Even if
tasks are running the same code, differing input data or
parameters typically will result in varying task run:times.

Longer running tasks are likely to form part of a tail,
particularly if they are scheduled late in the workload.

The second factor that occurs, even if tasks are all equal
in runtime, arises if the number of tasks is not divisible by
the number of workers. In this case the tasks cannot be split
evenly between workers.

The severity of the first factor depends on the statistical
distribution of task times in a workload: normally distributed
runtimes are not too problematic, but unfortunately, left-
skewed distributions of task times with a long right tail of
tasks do occur in real-world many-task applications. Figure 1
illustrates one and shows the drop-off in utilization that
occurs when it is run on a fixed number of processors. There
are far fewer processors than tasks, but the load-balancing
is insufficient to counter the skew of the distribution.
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Figure 1. Top: histogram of task durations for a large DOCK5 run of
934,710 tasks, demonstrating a long tail of task durations. The longest task
was 5,030 seconds. Bottom: worker utilization from a simulation of this
run on 160,000 processor cores using the simple load-balancing strategy of
assigning arbitrary tasks to idle workers. Red represents idle workers; green
represents active workers. The last task completes after 7,828 seconds.

V. CONSTRAINTS ON WORKER PROVISIONING

The constraints on what allocation sizes can be chosen
may vary significantly between supercomputers, for tech-
nical and policy reasons. In some cases, the architecture
or interconnect topology of the machine means that it
is difficult or impossible to allocate blocks of otherwise
desirable irregular sizes that would improve utilization. For
example, on the 160K CPU Blue Gene/P Intrepid,

the partition size is bounded from below by the size of
a processor set (pset), which comprises a single I/O node
and 64 compute nodes. Spatial fragmentation of the machine
is also a major issue on some machines when there are
many jobs of different sizes. Interconnect topologies such
as meshes or torus networks generally require that nodes
for a job be allocated contiguously in rectangular-shaped



blocks; this requirement has a strong tendency to cause
fragmentation of the machine [14]. Additional complications
exist on some systems. For example, on Intrepid, certain
partition sizes are particularly wasteful of interconnect re-
sources when a torus rather than mesh network is used [15].
As a result of these and other problems, the allocation
policy on Intrepid is such that its 4-CPU compute nodes
can be requested through the scheduler only in block sizes
of powers of 2, from 512 to 32,768. Partitions of 24,576 and
40,960 nodes (3 and 5 rows of 8,192 nodes respectively) are
also made available by request [16].

In addition to these constraints on allocation size, in
practice one often does not want to request too many
separate allocations, as some schedulers impose a cap on the
number of active allocations per user, and requesting many
small allocations can add overhead and delays for many-task
applications [8].

VI. TRADE-OFFS IN MAKING STATIC AND DYNAMIC
ALLOCATION DECISIONS

If we can dynamically or statically choose the allocation
size, then in conjunction with either scheduling policy
(random or sorted order) from Section IV, utilization can
generally be improved by allocating far fewer workers than
tasks. This strategy permits effective load balancing because
assigning tasks from the queue to idle workers can keep
utilization high for most of the allocation, until the queue
of runnable tasks is exhausted. In practice this means that
utilization levels can often be achieved with either policy far
above the theoretical worst-case bounds, as demonstrated by
the utilization chart in Figure 2.

However, sorting tasks is often not possible. Allocating
far fewer workers than tasks is effective in applications com-
prising massive numbers of short tasks, but it is problematic
otherwise. Reducing workers will naturally increase the time
to solution for the application, resulting in the trade-off
shown in Figure 2.

In this case the worker count must be low relative to
the task count to achieve over 90% utilization (e.g., 16K
workers for 935K tasks to achieve over 90% utilization). In
this instance it might not be a problem, as tasks are minutes
in length, and time to solution is approximately 12 hours.
If tasks were longer in duration, however, this time would
stretch out in proportion.

Furthermore, the utilization levels are likely to be sensitive
to changes in the distribution of task runtimes: a different
application with a longer or wider tailed distribution would
likely require an even smaller number of workers relative to
tasks. And even with this miserly proportion of workers to
tasks there is no guarantee of acceptable levels of utilization
on other workloads.

We seek here to develop methods that improve this trade-
off, thereby allowing a shorter time to solution for a given
utilization level. We also seek achieve to high utilization
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Figure 2. Results of a scheduling simulation of a many-task application
with 935,000 single threaded tasks on partitions of different sizes. The
random and sorted (long to short) load-balancing policies were both
simulated. The task runtime data used in the simulation was collected from a
large DOCK5 run on a Blue Gene/P system [17]. This relationships between
worker count, time to solution, and utilization are shown for worker counts
of 256 to 163,840 cores. The simulation is described in Section IX.

consistently and robustly without having to guess a “magic”
number of processors to run the job on.

We could simply “move the goalposts” by noting that in
some applications, a user might want a partial set of results
quickly, with the remainder either ignored or completed at a
later time. For many applications, even having 10%, 50%, or
90% of the final results is useful. For example, if a chemist
is screening compounds for a particular property, it may
be possible to use positive results as soon as they become
available, and an exhaustive search of all compounds may
not be necessary to the success of the endeavor.

Another method, which we explore in detail in the rest of
the paper, changes the allocation dynamically to end a large
block allocation of workers once there is only the “tail” of
tasks left to run. After “chopping off the tail,” a smaller
block of the machine or another computational resource
such as a smaller cluster, grid, or cloud can be allocated
to run the remaining tasks. The tail-chopping process can,
in principle, be performed several times, shifting to ever-
smaller allocations. Intuitively, we can see that this approach
could improve the trade-off between utilization and time to
solution. The power of a supercomputer will be harnessed to
complete the bulk of the work quickly on a large partition,
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Figure 3. Illustration of several different ways of deciding when to chop
the tail. The time to chop the tail can be selected in at least three ways:
when 80% of workers are idle, when d seconds have elapsed after a worker
falls idle, or when the amount of idle CPU time (the red area) exceeds a
threshold.

but utilization will not be severely degraded by leaving a
large partition underutilized.

VII. TAIL-CHOPPING APPROACH: ASSUMPTIONS AND
HEURISTIC

In the remainder of this paper, we investigate empirically
the effects of choosing different allocation sizes and of
tail-chopping: dynamically decreasing allocation sizes. For
simplicity in this initial study, we made the following
assumptions:

• Only one partition of processors will be used for the
target workload at a given time.

• There is no time limit on processor allocations: alloca-
tions can be requested for any desired duration and can
be terminated immediately at any time.
(In practice, most supercomputers have a maximum
allocation duration, and the duration of allocations
must be specified ahead of time; but attempting to
estimate the required partition duration ahead of time
would complicate experiments without providing any
particular insight into the value of tail-chopping.)

• A constant time is required to start or stop an allocation
partition.

• Tasks cannot be migrated from one worker to another.
To move a task, one must cancel and restart the task.

Given these assumptions, we investigate a range of ap-
proaches to “chopping off the tail” through the use of the
following parametrized heuristic:

• We decide how many workers to allocate for a given
number of tasks using a single parameter: a minimum
task/worker ratio that is applied when selecting a new
partition size. There will be a menu of available parti-
tion sizes for a given supercomputer, and the maximum
size satisfying the task/worker ratio will be chosen. In
the case where all are too large, the smallest will be
chosen. This formula is applied each time a partition
must be created: when the many-task application starts
and every time a smaller partition must be allocated.

• A single parameter is used to decide when to shrink
the number of workers: the maximum fraction of idle
workers that is tolerated before a switch to a smaller
allocation is triggered (provided a smaller allocation is
available).
We believe that this approach is adequate for our
study, although many other heuristics are possible. As
illustrated in Figure 3, this parameter is sufficient to
specify any point on the downward curve of utiliza-
tion. Different heuristics will behave differently as the
workload characteristics vary; but for a given instance,
this heuristic is sufficient to study the full range of
tail-chopping approaches from very aggressive to very
conservative.

These two parameters provide a simple way to investigate
key trade-offs involved in making decisions about processor
allocations.

The task/worker ratio trades off between utilization and
time to solution, as discussed in Section VI. The maximum
fraction of idle workers trades off between two sources of
inefficiency: unused capacity, when workers sit idle due to
lack of work, and lost progress, when tasks are canceled
upon moving to a different partition. A strategy that aggres-
sively moves to new partitions whenever workers start to
become idle will reduce the first but increase the second
source.

VIII. TAIL-CHOPPING: HYPOTHESES

Our expectations, which we have attempted to validate
through simulation and experiment, are as follows:

• Tail-chopping will not completely solve utilization
problems: utilization will still be lower with lower
task/worker ratios, as more work is lost when a bigger
partition is canceled, and more workers sit idle while
waiting to drop below utilization threshold.

• It will be hard to achieve high utilizations with smaller
workloads if the minimum allocation is comparatively
high. For example, on Intrepid where the minimum
allocation is is 2,048 cores, the wastage of up to 2,047
cores sitting idle while the tail finishes is high relative
to the amount of remaining work.

• We expect tail-chopping to be more beneficial in cases
where the task distribution is skewed and the tail has
a large number of much-longer-than-average tasks. For
these tasks the benefits from relocation in reducing the
number idle workers exceed greatly the costs in lost
progress.

• Tail-chopping is likely to provide a greater benefit when
no task sorting occurs, because sorting mostly handles
the long-running task problem. With sorting, if any of
the leftover tasks are the longest running, canceling
them is likely to be especially wasteful, since they will
have been running since the start of the allocation, and
much useful work will be lost.
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Figure 4. Effect of tail-chopping on trade-off between time to solution
and utilization in simulation for the real935k workload. The points along
each curve are derived from the measured (time to solution, utilization)
observations for task/worker ratios of 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6,
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are not always convex: with tail-chopping, in some cases increasing the
task/worker ratio could hurt time to solution or improve utilization because
of the delays and lost work that occur as a result of tail-chopping. Top:
with random task order (log scale). Bottom: with sorted task order (linear
scale).

• Tail chopping is unlikely to provide any benefit com-
bined with sorting if max length/mean length >
task/worker ratio. The reason is that case the longest-
running tasks will be finished or almost finished when
tail-chopping happens, and we would just be canceling
and restarting shorter running tasks.

IX. SIMULATION

We conducted a number of simulations to investigate the
effect of varying the parameters described in Section VII.
From the simulation, we collected data for a wide range of
scheduling algorithm parameters before implementing the
idea in practice.

A. Method

We simulated the Intrepid Blue Gene/P configuration,
modeling partitions with the following numbers of CPU
cores: 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536, 98304, 131072 and 163840.
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Figure 5. Effect of tail-chopping on time to solution in simulation for the
real935k workload. Top: with random task order. Bottom: with sorted task
order.

Three workloads with different characteristics were used
to test the effectiveness of different policies. All tasks in the
workloads were single threaded and ran on a single core.

Measurements of two workloads were obtained from
DOCK [18] runs on Intrepid. Measurements for real935k,
a large run of 934,710 DOCK5 tasks were collected during
previous work [17]. Measurements for the real15k workload
of 15,000 DOCK6 tasks were collected on Intrepid. Both
workloads were executed with Falkon, and the total run-
times were collected from log files. A synthetic left-skewed
workload of 15,000 tasks with a long tail (synth15k) was
created by sampling from a log-normal distribution with the
same mean runtime as real15k and four times the standard
deviation of real15k.

We took further measurements to estimate the time taken
to start up and close down a partition of the machine.

• The time from requesting an allocation through the
resource manager (Cobalt) until Falkon reported that all
the partitions requested were available to start executing
tasks – 170.0 seconds on average for a partition of 64
nodes.

• The time taken between requesting an allocation to
terminate (through cqdel) and the allocation finishing
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Figure 6. Top: Trade-off between utilization and time to solution observed in tail-chopping simulation for the real15k (left) and synth15k (right) workloads.
The points along each curve are derived from the measured (time to solution, utilization) observations for task/worker ratios of 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2,
2.4, 2.6, 2.8, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 60 (following the curves left-to-right). The curves
are not always convex: with tail-chopping, in some cases increasing the task/worker ratio could hurt time to solution or improve utilization because of the
delays and lost work that occur as a result of tail-chopping. Bottom: Histograms that demonstrate the different distributions for the two workloads.

– 2.4 seconds on average.

We then used these measurements to simulate the running of
various scheduling policies. We assumed that tasks run for
exactly the same duration as was measured for the real run
and that the next task in the queue can always be scheduled
with zero delay as soon as a worker becomes idle. Zero
scheduling delay may not be a realistic assumption, since a
scalable distributed algorithm will not likely feature a single,
central task queue; but the results provide insight into how
more scalable algorithms that approximate a central task
queue will behave.

In the experiment, we have control over three parameters:

• Scheduling order – in random order or in descending
order of runtime

• Minimum task/worker ratio
• Maximum fraction of idle workers

We simulated a large number of combinations of these
variables. The simulation was straightforward: a list of task
runtimes was loaded and either sorted or randomly shuffled
as appropriate. At the start, m0 workers are allocated, and
the first m0 tasks assigned to them, with m0 chosen using
the task/worker ratio. The simulation then simply uses a task
queue to assign work to idle workers. This continues until all
tasks are completed or the maximum fraction of idle workers
is exceeded, at which point a partition change is triggered
and the process repeats with the unfinished tasks.

With sorted task order, the simulation is deterministic, so
we need to perform only one trial. With randomized task
order, we perform 100 trials of the simulation, reshuffling
the order of task execution each time and collecting the mean
of all observed times.

We took several observations for each parameter combi-
nation:

• Time to solution (time from start-up until all tasks are
completed) (milliseconds).

• Total active CPU time: total CPU time used by workers
while running tasks (CPU-milliseconds).

• Total worker idle CPU time (CPU-milliseconds).
• Total allocation CPU time: the amount of CPU time

provisioned. The time taken for a partition to start
up and become available was not included (CPU-
milliseconds).

We already knew from the input data the total amount of
“useful” CPU time required to complete the workload, so
from the available data we then calculated the following:

• Utilization, calculated as Total work
Allocation time

• Total wasted worker CPU time due to task cancella-
tions: Active CPU time− Useful CPU Time.

B. Results

For a fixed task/worker ratio, enabling tail-chopping im-
proved utilization for a wide range of parameter values
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Figure 7. Effect of tail-chopping on utilization in simulation for the
real935k workload. Top: with random task order. Bottom: with sorted task
order.

for all three workloads (see Figure 7 for an example).
This promising result suggests that reducing the inefficiency
of idle processors typically outweighs the inefficiency of
canceling tasks. Utilization levels of 90%+ and 95%+ were
also more reliably achieved: utilization appears less sensitive
to the task/worker ratio with tail-chopping enabled.

Enabling tail-chopping invariably increased time to solu-
tion, as was clearly expected. We must therefore look at the
trade-off between TTS and utilization to determine if tail-
chopping is a worthwhile exercise. If it cannot achieve a
better trade-off than simply varying the task/worker ratio,
then it provides little benefit.

Tail-chopping significantly improved the trade-off curves
compared to the random load-balancing policy with no tail-
chopping for two of three workloads: synth15k and real935k,
which both had runtime distributions with elongated right
tails. For example, in Figure 6, for several parameter values
of maximum fraction idle, we were able to achieve 95%
utilization while still getting a solution within 13 to 14 hours,
which would be impossible without tail-chopping on this
workload.

Comparing the trade-off curves for real15k and synth15 in
Figure 6, we get a strong indication that the skewedness of
the distribution is a crucial variable in determining whether

tail-chopping is effective. We can confidently attribute this
difference to the higher variance and skewed distribution
of the synthetic tasks: task count and mean runtime were
identical.

The trade-off curves in Figure 6 and Figure 4 do not
show clearly that one parameter for maximum fraction idle
is better than another.

If we are aiming for a low time to solution, then 0.8
appears to be a good setting. The curves for 0.8 bulge out
further to the left, presumably because this setting allows the
vast majority of work to be done on the larger partitions,
leaving only a small tail of tasks to complete on smaller
partitions. For example, in Figure 1, if we chop off the tail
when 80% of workers are idle, then the bulk of the work
will be completed, leaving only long-running tasks.

A more sophisticated heuristic that uses available infor-
mation about the workload and the runtimes of completed
tasks will likely give a good trade-off more consistently than
any single parameter value here.

Tail chopping provided no further benefit when applied
in addition to sorting. All three workloads showed a trade-
off similar to that observable in Figure 4 when tasks were
sorted: enabling tail-chopping resulted in comparable or
worse utilization for a given TTS. This is fairly predictable:
by the time utilization starts to dip below 100% when tasks
have been sorted, it is unlikely that there will be many long-
running tasks left to complete.

X. EXPERIMENT

To validate our results and demonstrate the viability of
the concept, we conducted an experiment, executing a real
application on Intrepid with a set of parameters that had
been found to be effective in the simulation.

A. Method

We augmented the Falkon task dispatcher with additional
functionality to implement the approach described above to
allocate and downsize partitions.

To validate the simulation results, we ran the workload
of 15,000 DOCK6 tasks with and without tail-chopping. In
both cases we used a task/worker ratio of 5.0. When the tail-
chopping was enabled, we triggered it when 50% of workers
became idle.

B. Results

The results of the experiment are illustrated in Figure 8.
As expected, utilization is improved by the tail-chopping:
with tail-chopping enabled we use 1,179 CPU-hours at
89.0% utilization, compared to 1,251 CPU-hours at 83.7%
utilization without tail-chopping for the same workload.

Time to solution increases substantially with tail-
chopping: from 39.6 minutes to 87.7 minutes. The large
delay between the two allocations in the experiment with
tail-chopping indicates that in our simulation we may have



underestimated the time it could take to get a new allocation
of processors, but the time is likely to be highly variable
on large-scale systems such as Intrepid where scheduling
policies are not geared to minimizing waiting times for
this particular situation. Job queues are likely be quite long
and there are unlikely to be provisions in the scheduler to
fast-track the requests that are continuations of a running
job. Workarounds to this delay problem are be discussed in
Section XI.
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Figure 8. Worker utilization over time for the experiment with 15000
DOCK6 tasks. Top: without tail-chopping. Bottom: tail-chopping when 50%
of workers are idle.

XI. DISCUSSION AND PROPOSALS FOR IMPROVEMENT

The simulation results in Section IX-B indicate that the
basic tail-chopping approach could be valuable in enabling
many-task applications to make efficient and effective use
of supercomputing hardware.

We can identify three major problems that prevent tail-
chopping from providing further improvements to the trade-
off between utilization and time to solution: 1

1) The time spent waiting for a new allocation after tail-
chopping can increase time to solution significantly,
as was shown especially in Section X-B.

2) In our current system, tasks are canceled and restarted
when the tail is chopped. This strategy can further
increase the time to solution, as significant progress
may be lost, particularly on long-running tasks, and
can also decrease utilization because the CPU time
used was wasted.

3) The currently used heuristics are not sophisticated, and
any particular parameter choice will result in subopti-

mal decisions that could be avoided by using available
information. For example, if the allocation is down-
sized when 50% of workers are idle, an allocation may
be canceled even if the remaining tasks are all nearly
finished. If there are a large number of long-running
tasks, the allocation may be left to run for an overly-
long period of time despite the fact that only 50%
of workers are occupied. The fixed task/worker ratio
for every partition (including after tail-chopping) is
also likely suboptimal: it is probably too conservative
in allocating a small proportion of workers compared
with the number of trailing tasks. This is likely to
increase the time to solution substantially, and lower
utilization is likely affordable. Inefficient use of a
small partition makes a relatively small impact on the
overall utilization of a large MTC job.

Proactive provisioning of smaller processor allocations
could address problem 1: one or more smaller processor
allocations could be requested proactively and kept running
alongside the large allocation given to the scheduler, reduc-
ing delays waiting for a new allocation after tail-chopping.
If time to solution is paramount, the large partition could
also be retained until a new partition came online.

The ability to downsize existing allocations (by releasing
some fraction of the current processors without releasing all
of them) would address problem 1, as no new allocation
would need to be started. This would also partially address
problem 2, as not all tasks would need to be canceled. This
would require support from the supercomputer’s scheduler
to implement.

The ability to migrate tasks between workers within the
same allocation and to workers in different allocations could
address problem 2. This could be done either by check-
pointing to a global file-system and restarting, which would
impose significant overheads, or by peer-to-peer transfer
of process state among workers. Either method requires
additional application or middleware functionality.

If we have the option to downsize an allocation, then a
migration feature would allow tasks to be consolidated into
one region of the existing allocation, and the other region
to be dropped.

Identifying tasks that have a long time remaining to run
would be helpful in deciding which tasks to proactively
migrate. If the distribution of tasks runtimes has a wide tail,
then this strategy is possible, as tasks that have already run
a long time are likely to continue to run a long time [7].

We can also imagine better heuristics that address problem
3. Using more available information allows more sophis-
ticated estimates of the impact of tail-chopping on time
to solution and utilization, given a particular workload.
Runtimes of completed tasks and lower bounds on the
runtime of currently running tasks are available. This in-
formation is useful for inferring some of the properties of
the distribution of task runtimes, useful in estimating the



impact of scheduling decisions.

XII. CONCLUSION

We have described and provided examples and explana-
tion of the “trailing task problem” that occurs in many-task
computing and have characterized it relative to problems in
scheduling theory.

We have shown through both simulation and experiment
that the tail-chopping approach described in this paper is a
promising way to address the trailing task problem. Not only
can it improve the trade-off between utilization and time to
solution, but it also provides a more robust way to achieve
utilization levels of 90%+.

We see several directions for further research on this topic.
The problem of provisioning blocks of workers could be
formalized as a problem in scheduling theory, which might
provide deeper insights.

Practically, however, the measures described in Sec-
tion XI, if implemented in supercomputer schedulers
and supported in many-task computing middleware, could
greatly improve the trade-off between time to solution and
utilization to the point where many-task applications become
a significantly more attractive class of applications to run on
supercomputers.
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